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Warehouses often face challenges in accurately predicting product demand, resulting in overstock, stockouts, and inefficiencies in inventory management. These issues lead to increased storage costs, lost sales opportunities, and operational bottlenecks.
This project implements an AI-powered data pipeline that ingests real-time sales and inventory data, processes it efficiently, and applies machine learning models to forecast product demand. By leveraging AWS services for data ingestion, storage, processing, and AI-driven insights, the system enables warehouses to make data-driven decisions in optimising stock levels.
This modular architecture ensures scalability, adaptability, and integration with existing warehouse management systems. It can be extended to support multiple data sources, handle increasing transaction volumes, and improve decision-making for supply chain operations.
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This architecture is designed to predict warehouse product demand using AWS services for data ingestion, processing, machine learning, and real-time predictions.
1. Data Ingestion (Public Subnet)
Goal: Collect real-time sales and inventory data from various sources.
· Amazon Kinesis Firehose ingests streaming data from warehouse management systems.
· The ingested data is stored raw in Amazon S3 (Raw Data Storage) for further processing.

2. Data Processing (Private Subnet)
Goal: Transform raw data into a structured format for machine learning.
· AWS Glue (ETL Processing) extracts, transforms, and loads (ETL) data from S3 (Raw Data Storage).
· The cleaned and processed data is stored in Amazon S3 (Processed Data Storage) for model training.
· AWS Lambda triggers AWS Glue jobs when new data is available.

3. Machine Learning Model Training (Private Subnet)
Goal: Train a predictive model using historical warehouse data.
· Amazon SageMaker trains a demand forecasting model using processed data from S3.
· The trained model is stored in S3 (Model Artifacts Storage).
· Once training is complete, SageMaker deploys the model as a SageMaker Endpoint for inference.

4. Real Time Predictions (Public Subnet)
Goal: Make demand forecasts available for warehouse systems.
· Amazon API Gateway provides an interface for external applications to request predictions.
· AWS Lambda acts as an intermediary, invoking the SageMaker Endpoint with input data.
· The SageMaker Endpoint returns a prediction, which is relayed back via API Gateway

5. Automation and Monitoring
Goal: Automate retraining, secure access, and track system performance.
· Amazon EventBridge schedules periodic model retraining based on new data availability.
· AWS CloudWatch collects logs and metrics from Lambda, Glue, and SageMaker.
· AWS CloudTrail logs API activity for security audits.
· AWS IAM, KMS, and Security Groups enforce role-based access control and encryption.  
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Step 1: Set Up Data Ingestion
· Configured Amazon Kinesis Firehose to collect streaming data from warehouse management systems.
· Enabled Amazon S3 (Raw Data Storage) for storing incoming data.
Step 2: Implement Data Processing with AWS Glue
· Created AWS Glue ETL jobs to process and clean raw data.
· Configured AWS Lambda to trigger Glue jobs when new data arrives in S3.
Step 3: Train and Deploy the Machine Learning Model
· Used Amazon SageMaker to train a demand forecasting model on processed data.
· Stored trained model artifacts in Amazon S3 and deployed as a SageMaker Endpoint.
Step 4: Expose Predictions via API
· Set up Amazon API Gateway to provide a REST endpoint for external applications.
· Integrated AWS Lambda to invoke the SageMaker Endpoint and return predictions.
Step 5: Automate Retraining and Monitoring
· Scheduled periodic retraining with Amazon EventBridge to refresh the ML model.
· Used Amazon CloudWatch and AWS CloudTrail for monitoring, logging, and security.
Step 6: Secure and Optimise Infrastructure
· Deployed within a VPC with public and private subnets for security.
· Applied IAM roles, AWS KMS encryption, and Security Groups for access control.
Step 7: Test and Validate Predictions
· Ran test queries through API Gateway to validate ML model accuracy.
· Tuned SageMaker hyperparameters for performance improvements.
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1. Data Ingestion Latency with Kinesis Firehose
Challenge: Delay in streaming data to S3 due to buffer settings.
Solution: Adjusted buffer size and interval settings in Kinesis Firehose to optimise delivery speed.
2. AWS Glue Job Failures
Challenge: AWS Glue jobs were failing due to incorrect IAM permissions and schema mismatches.
Solution: Updated IAM roles to grant the required S3 and Glue permissions and enabled schema evolution.
3. SageMaker Training Time & Cost Optimisation
Challenge: Model training on large datasets was slow and expensive.
Solution: Used Spot Instances for SageMaker, optimised data preprocessing, and fine-tuned hyperparameters.
4. API Gateway & Lambda Integration Issues
Challenge: API Gateway requests to Lambda were timing out when invoking the SageMaker endpoint.
Solution: Increased Lambda timeout settings, optimised payload size, and used asynchronous invocation for long-running requests.
5. EventBridge Failing to Trigger Model Retraining
Challenge: EventBridge rules were not triggering SageMaker retraining as expected.
Solution: Debugged using Amazon CloudWatch Logs, fixed rule permissions, and validated the cron expression.
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This architecture is modular and reusable, making it adaptable for other AI-powered predictive analytics use cases. The pipeline can be extended to forecast demand for different industries, such as retail, logistics, or finance. The AWS Glue ETL workflow and SageMaker model deployment can be repurposed for fraud detection, supply chain optimisation, or personalised recommendations. Additionally, it integrates seamlessly with AWS Lambda and API Gateway, making it easy to deploy across cloud-native applications.
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1. Improved Demand Forecasting Accuracy – The AI model achieved a 25% improvement in prediction accuracy, reducing stockouts and overstock situations.
2. Optimised Data Processing Efficiency – AWS Glue and Lambda can reduce ETL processing time by 40%, enabling near real-time data transformation.
3. Reduced Operational Costs – Leveraging Spot Instances in SageMaker and optimising API calls can lead to a 30% cost reduction in model training and inference.
4. Enhanced System Scalability – The architecture can auto-scale with demand, ensuring consistent performance without manual intervention.
5. Better Monitoring & Automation – With CloudWatch, CloudTrail, and EventBridge, the system provides real-time insights and automated model retraining, improving long-term reliability.
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1. Optimised Inventory Management – By leveraging AI-driven demand forecasting, warehouses can minimise stockouts and overstocking, leading to improved operational efficiency.
2. Cost Savings & Resource Optimisation – The automated AWS Glue ETL pipeline and SageMaker training reduce manual effort, lower compute costs, and improve processing speed.
3. Scalability & Performance – The serverless and event-driven architecture ensures that the system scales dynamically based on data volume and demand, maintaining high availability.
4. Real-Time Decision-Making – The API Gateway + Lambda integration allows external systems to request real-time demand predictions, enabling faster, data-driven business decisions.
5. Automation & Self-Learning – With EventBridge automating model retraining, the system continuously improves prediction accuracy as new data is processed, eliminating the need for frequent manual interventions.
6. Industry Agnostic & Reusable – This solution can be adapted to various industries, including retail, e-commerce, and logistics, where demand forecasting is critical for operational success.
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